Characterization of biodegradable core–clad borosilicate glass fibers with round and rectangular cross‐section

Author:

Hongisto Mikko12ORCID,Ghanavati Sonya23,Lemiere Arnaud2ORCID,Hauss Gregory4,Boraiah Shashank1,Cornet Louis1,Poulon‐Quintin Angeline1,Pagnoux Dominique5,Bernard Dominique1,Massera Jonathan3,Petit Laeticia2,Jubera Veronique1,Danto Sylvain1ORCID

Affiliation:

1. Univ. Bordeaux, CNRS Bordeaux INP ICMCB UMR 5026 Pessac France

2. Tampere University, Photonics Laboratory Tampere Finland

3. Tampere University Faculty of Medicine and Health Technology Tampere Finland

4. Univ. Bordeaux, CNRS, PLACAMAT, UMS 3626 Pessac France

5. Université de Limoges, XLIM, UMR CNRS 7252 Limoges France

Abstract

AbstractHere, we report on core–clad bioactive borosilicate fibers, that we have prepared both with round and rectangular cross‐section profile. The exposed approach, which relies on the stacking and drawing of glass slabs, demonstrates our ability to develop bioactive‐based glass fibers with tailored cross‐section profiles. Tens‐of‐meters‐long fibers were successfully drawn, although suffering from elevated losses in the case of the rectangular ones. The response of the fibers in simulated body fluid was studied for both geometries. We found that a round cladding can act as protective layer, tempering effects of the corrosion. We also noticed that rectangular fibers are more prone to degradation, the enhanced corrosion beginning from their sharp corners as they accumulated residual tensile stress during drawing. To the best of our knowledge, this is the first report on the effect of residual tensile stresses from surface tension deformations applied to the corrosion of rectangular fibers. As geometry plays a critical role on the biodegradation behavior of the fiberglass, we believe the enclosed results could lead to the design of fiber devices with tailored cross‐section profile in order to tune their rate of degradation on solely based geometrical effects.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solid-core anti-resonant fiber based on silicate glass;Optics & Laser Technology;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3