Density effects on native and non‐native trout survival in streams

Author:

Huntsman Brock M.1ORCID,Flynn Lauren1,Caldwell Colleen A.2,Lynch Abigail J.3,Abadi Fitsum1

Affiliation:

1. Department of Fish, Wildlife and Conservation Ecology New Mexico State University Las Cruces New Mexico USA

2. U.S. Geological Survey New Mexico Coopertive Fish and Wildlife Research Unit Las Cruces New Mexico USA

3. U.S. Geological Survey National Climate Adaptation Science Center Reston Virginia USA

Abstract

AbstractEnvironmental stressors associated with a changing climate and non‐native fish, individually, represent significant threats to native fish conservation. These threats can exacerbate risks to native fishes when conditions interact at the trailing edge of a population's distribution. We collected capture–mark–recapture data for Rio Grande cutthroat trout (RGCT, Oncorhynchus clarkii virginalis) at the trailing edge of all cutthroat trout distributions from eight northern New Mexico populations. We used a factorial sampling design from streams characterised as “cool” or “warm” and whether RGCT were sympatric with non‐native brown trout (Salmo trutta). We tested competing hypotheses that warm temperatures, reduced flows, high densities and sympatry with brown trout would negatively impact RGCT apparent survival rates. We found the strongest evidence for a non‐native trout interaction with total trout density affecting RGCT apparent survival rates. Our results are consistent with patterns observed in northern cutthroat trout populations where non‐native salmonids negatively impacted apparent survival rates. We also found that a negative density effect was observed on allopatric RGCT and sympatric brown trout apparent survival, but a positive density effect was observed for sympatric RGCT. These results suggest higher density populations of RGCT may be more resilient to displacement by non‐native trout than low‐density populations.

Funder

U.S. Geological Survey

T and E

Publisher

Wiley

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3