Species richness: A pivotal factor mediating the effects of land use intensification and climate on grassland multifunctionality

Author:

Allart L.1ORCID,Dumont B.1ORCID,Joly F.1ORCID,Mosnier C.1ORCID,Alvarez G.2ORCID,Galliot J.‐N.3ORCID,Luna D.2ORCID,Pottier J.2ORCID,Gross N.2ORCID

Affiliation:

1. University of Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores Saint‐Genès‐Champanelle France

2. University of Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial Clermont‐Ferrand France

3. INRAE, UE1414 Herbipôle Laqueuille France

Abstract

Abstract Temperate seminatural grasslands harbour unique biodiversity, support livestock farming through forage production, and deliver many essential ecosystem services (ESs) to human society; they are highly multifunctional. However, temperate grassland ecosystems are also among the most threatened ecosystems on earth due to land use and climate changes. Understanding how biodiversity, climate and land use intensification impact grassland multifunctionality through complex direct and indirect pathways is critical to better anticipate the future of these fragile ecosystems. Here, we evaluate how local plant species richness (SR) modulates the effect of land use intensification and climate on grassland multifunctionality (using six key ESs: biomass productivity and stability, forage quality, carbon storage, pollination and local plant rarity) in the French Massif Central, the largest grassland in Western Europe. We sampled 100 grasslands with contrasted fertilization rates and SR, over large elevational and latitudinal gradients related to variation in mean annual temperature (MAT), and drought severity (DS), two key climate change drivers predicted to increase in the future. Using a confirmatory path analysis, we found that SR was the main driver of multifunctionality. We also found significant SR × MAT and SR × fertilization interactions suggesting that warm climate and high fertilization rates alter the biodiversity–ecosystem multifunctionality relationships. Furthermore, increasing temperature and fertilization indirectly influenced multifunctionality by decreasing SR and consequent multifunctionality in warm lowland and highly fertilized grasslands compared to colder montane grasslands or less fertilized ones. DS only impacted some ES individually (e.g. forage quality). Synthesis and applications: We identified species richness (SR) as a pivotal factor mediating the effects of land use intensification and climate on multifunctionality through both direct and indirect pathways. Failing to account for changes in SR could thus bias any prediction of, or aggravate, the effects of land use intensification and climate change on ecosystem services delivery in temperate grassland ecosystems. Considering that SR, mean annual temperature and fertilization are major proxies of three main global change drivers (biodiversity loss, climate change and land use intensification) our study may help to better anticipate the effect of multiple interacting global change drivers on grassland ecosystems.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3