Plant species composition and key‐species abundance drive ecosystem multifunctionality

Author:

Li Xinshuai123,Chen Youchao4,Liu Feng1ORCID,Cheng Xiaoli5ORCID,Zhang Quanfa1,Zhang Kerong1678ORCID

Affiliation:

1. Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences Wuhan P.R. China

2. University of the Chinese Academy of Sciences Chinese Academy of Sciences Beijing P.R. China

3. Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China

4. State Key Laboratory of Subtropical Silviculture Zhejiang A&F University Hangzhou China

5. School of Ecology and Environmental Science Yunnan University Kunming P. R. China

6. Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station The Chinese Academy of Sciences & Hubei Province Wuhan P.R. China

7. Key Laboratory of Lake and Watershed Science for Water Security Chinese Academy of Sciences Nanjing China

8. School of Ecology and Environment Tibet University Lhasa P.R. China

Abstract

Abstract Global biodiversity loss has generated great interest in the role of plant communities in driving ecosystem functions. There is limited understanding of how soil properties, plant richness and plant community composition interact to affect ecosystem multifunctionality. We conducted a constructed ecosystem experiment by simultaneously manipulating soil origin (i.e. fertile farmland soil and relatively infertile bare land soil), plant richness and community composition (one‐species monoculture, and all possible two‐, three‐ and four‐species combinations of five plants) to evaluate their influence on ecosystem multifunctionality related to the accumulation of biomass, carbon (C) and nitrogen (N) in plants, greenhouse gas emissions, soil nutrients, soil N fixation and mineralization of N and phosphorus (P). We found that ecosystem multifunctionality was significantly affected by soil origin, plant community composition and the community‐weighted mean (CWM) of plant biomass, but not by plant richness. We grouped the community composition into the N‐fixing group (including N‐fixing plants) and the non‐N‐fixing group (excluding N‐fixing plants). The N‐fixing plant group exhibited significantly higher multifunctionality than the non‐N‐fixing species group in both soil origins. For bare land soil, multifunctionality increased with the increasing relative abundance and biomass ratio of Albizia julibrissin (N‐fixing species) in communities, but decreased with the biomass ratio of Platycladus orientalis (non‐N‐fixing species). For farmland soil, multifunctionality increased with the abundance of Toona sinensis (non‐N‐fixing species) and the biomass ratio of Albizia julibrissin, but decreased with the abundance and biomass ratio of Morus alba (non‐N‐fixing species). These results indicate that the key species determining ecosystem multifunctionality vary under different soil conditions. Synthesis and applications: We propose that plant community composition and the relative abundance and biomass ratio of key species drive ecosystem multifunctionality. We suggest that selecting the appropriate plant combination under different soil conditions should be emphasized in ecological restoration projects. Our study highlights the differentiated roles of key species on ecosystem functions under different resource conditions. The N fixation in general plays a crucial role in driving ecosystem multifunctionality and the N‐fixing plants can serve as restoration tools in nutrient‐poor degraded lands.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3