Stand structure of Central European forests matters more than climate for transpiration sensitivity to VPD

Author:

Bachofen Christoph12ORCID,Poyatos Rafael34ORCID,Flo Víctor45ORCID,Martínez‐Vilalta Jordi34ORCID,Mencuccini Maurizio36ORCID,Granda Víctor3ORCID,Grossiord Charlotte12ORCID

Affiliation:

1. Plant Ecology Research Laboratory PERL, School of Architecture Civil and Environmental Engineering, EPFL Lausanne Switzerland

2. Functional Plant Ecology, Community Ecology Unit Swiss Federal Institute for Forest, Snow and Landscape WSL Lausanne Switzerland

3. CREAF, Bellaterra (Cerdanyola del Vallès) Catalonia Spain

4. Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès) Catalonia Spain

5. Department of Life Sciences Imperial College London Ascot UK

6. ICREA Barcelona Spain

Abstract

Abstract Temperature rise and more severe and frequent droughts will alter forest transpiration, thereby affecting the global water cycle. Yet, tree responses to increased atmospheric vapour pressure deficit (VPD) and reduced soil water content (SWC) are not fully understood due to long‐term tree adjustments to local environmental conditions that modify transpiration responses to short‐term VPD and SWC changes. We analysed sap flux density (SFD) of Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus ilex from 25 sites across Europe to understand how daily variation in SWC affects the sensitivity of SFD to VPD (βVPD) and the maximum SFD (S95). Furthermore, we tested whether long‐term adjustments to site climatic conditions and stand characteristics affect βVPD and S95. The studied species showed contrasting βVPD and S95 with the largest values in F. sylvatica, followed by Q. ilex, which surpassed the two conifers that showed low βVPD and low S95. We observed that βVPD and S95 dropped during days of low SWC in F. sylvatica, P. sylvestris and Q. ilex, but not in P. abies. Both βVPD and S95 were driven by tree height, and the temperature and precipitation at the sites. However, stand basal area was the most important driver of βVPD and S95, explaining 30% of their total variance. Synthesis and applications: A future warmer and drier climate will restrict tree transpiration and thereby heavily affect the soil–plant‐atmosphere coupling. However, the effect of basal area, being the largest driver of tree transpiration sensitivity to vapour pressure deficit across a broad range of conditions, provides the opportunity to pre‐adapt European forests to future climate conditions. While stand thinning can increase the soil water availability for remaining trees, it also increases transpiration sensitivity to high air temperatures and may thereby amplify tree vulnerability to heat and drought.

Funder

Agencia Estatal de Investigación

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Universitat Rovira i Virgili

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3