Predicting sub‐continental fuel hazard under future climate and rising atmospheric CO2 concentration

Author:

Yang Jinyan1ORCID,Teckentrup Lina12,Inbar Assaf1,Knauer Jürgen1,Jiang Mingkai3,Medlyn Belinda1,Price Owen4,Bradstock Ross4,Boer Matthias M.1

Affiliation:

1. Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia

2. ARC Centre of Excellence for Climate Extremes Sydney New South Wales Australia

3. College of Life Sciences Zhejiang University Hangzhou China

4. Centre for Environmental Risk Management of Bushfires, School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong New South Wales Australia

Abstract

Abstract Bushfire fuel hazard is determined by the type, amount, density and three‐dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in the future with plant growth patterns. Rising atmospheric CO2 concentration (Ca) stimulates plant productivity (‘fertilisation effect’) but also alters climate, leading to a ‘climatic effect’. Both effects have impacts on future vegetation and thus fuel hazard. Quantifying these effects is an important component of predicting future fire regimes and evaluating fire management options. Here, we combined a machine learning algorithm that incorporates the power of large fine spatial resolution (i.e. 90 m) datasets with a novel optimality model that accounts for the climatic and fertilisation effects on vegetation cover. We demonstrated the usefulness and practicality of this framework by predicting fuel hazard across the state of Victoria in Australia. We fitted and evaluated the models with long‐term (i.e. 20 years), ground‐based fuel observations. The models achieved strong agreement with observations across the fuel hazard range (accuracy >65%). We found fuel hazard increased more in dry environments due to future climate and Ca. The contribution of the ‘fertilisation effect’ to future fuel hazard varied spatially by up to 12%. The predictions of future fuel hazard are directly useful to inform fire mitigation policies and as a reference for climate model projections to account for fire impacts. Synthesis and applications: Climate change and rising Ca have profound impacts on vegetation and thus fuel load. Operational fire management and future fire risk forecasts will benefit from our realistic fuel load prediction framework that incorporates plant responses and fine soil and terrain attributes.

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3