From buzzes to bytes: A systematic review of automated bioacoustics models used to detect, classify and monitor insects

Author:

Kohlberg Anna B.1ORCID,Myers Christopher R.2ORCID,Figueroa Laura L.1ORCID

Affiliation:

1. Department of Environmental Conservation University of Massachusetts Amherst Massachusetts USA

2. Center for Advanced Computing, and Laboratory of Atomic & Solid State Physics Cornell University Ithaca New York USA

Abstract

Abstract Insects play vital ecological roles; many provide essential ecosystem services while others are economically devastating pests and disease vectors. Concerns over insect population declines and expansion have generated a pressing need to effectively monitor insects across broad spatial and temporal scales. A promising approach is bioacoustics, which uses sound to study ecological communities. Despite recent increases in machine learning technologies, the status of emerging automated bioacoustics methods for monitoring insects is not well known, limiting potential applications. To address this gap, we systematically review the effectiveness of automated bioacoustics models over the past four decades, analysing 176 studies that met our inclusion criteria. We describe their strengths and limitations compared to traditional methods and propose productive avenues forward. We found automated bioacoustics models for 302 insect species distributed across nine Orders. Studies used intentional calls (e.g. grasshopper stridulation), by‐products of flight (e.g. bee wingbeats) and indirectly produced sounds (e.g. grain movement) for identification. Pests were the most common study focus, driven largely by weevils and borers moving in dried food and wood. All disease vector studies focused on mosquitoes. A quarter of the studies compared multiple insect families. Our review illustrates that machine learning, and deep learning in particular, are becoming the gold standard for bioacoustics automated modelling approaches. We identified models that could classify hundreds of insect species with over 90% accuracy. Bioacoustics models can be useful for reducing lethal sampling, monitoring phenological patterns within and across days and working in locations or conditions where traditional methods are less effective (e.g. shady, shrubby or remote areas). However, it is important to note that not all insect taxa emit easily detectable sounds, and that sound pollution may impede effective recordings in some environmental contexts. Synthesis and applications: Automated bioacoustics methods can be a useful tool for monitoring insects and addressing pressing ecological and societal questions. Successful applications include assessing insect biodiversity, distribution and behaviour, as well as evaluating the effectiveness of restoration and pest control efforts. We recommend collaborations among ecologists and machine learning experts to increase model use by researchers and practitioners.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3