Sand lizards (Lacerta agilis) decrease nymphal infection prevalence for tick‐borne pathogens Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in a coastal dune ecosystem

Author:

Köhler Clara Florentine1ORCID,Sprong Hein1,Fonville Manoj1,Esser Helen2,de Boer Willem Frederik2,van der Spek Vincent3,Spitzen‐van der Sluijs Annemarieke45

Affiliation:

1. Centre for Infectious Disease Control National Institute for Public Health and the Environment Bilthoven The Netherlands

2. Wildlife Ecology and Conservation Group Wageningen University Wageningen The Netherlands

3. Department Bron‐ en Natuurbeheer Waternet Amsterdam The Netherlands

4. Reptile, Amphibian and Fish Conservation the Netherlands Nijmegen The Netherlands

5. Institute for Water and Wetland Research, Animal Ecology and Physiology Radboud University Nijmegen The Netherlands

Abstract

Abstract Understanding which factors determine tick‐borne disease hazard can contribute to effective disease control. In Europe, the hazard of the pathogens Borrelia burgdorferi s.l. and Anaplasma phagocytophilum is determined by local tick densities (mainly Ixodes ricinus) and the reservoir competence of the host species community. Sand lizards (Lacerta agilis) are common hosts for larvae and nymphs of I. ricinus and non‐competent reservoirs for both pathogens. Consequently, high relative abundance of L. agilis is hypothesized to be associated with lower infection prevalence in nymphs. Here, we aimed to test whether this effectively occurs in natural settings. We sampled different habitat types within a heterogenous dune landscape at the Dutch coast and estimated (1) L. agilis densities, (2) host community competence, (3) the density and infection prevalence of questing I. ricinus ticks and (4) the number and infection prevalence of ticks feeding on L. agilis. Captured L. agilis had high tick burdens and contributed substantially to feeding I. ricinus larvae in their natural habitat. B. burgdorferi s.l. and A. phagocytophilum were virtually absent from feeding larvae and nymphs. The nymphal infection prevalence of both pathogens in questing ticks was lower in habitat types where L. agilis was more abundant. Hence, L. agilis strongly reduced community competence. The density of questing nymphs was higher in habitat types with denser vegetation and also varied more between habitat types than infection prevalence. As a result, nymphal density had a stronger effect on the density of infected ticks than did nymphal infection prevalence. Synthesis and applications. Coastal dune habitats favourable for L. agilis have lower densities of questing nymphs and a lower human infection hazard. These results might be applicable to similar ecosystems where L. agilis is present. From a public health perspective, this underlines the importance of preserving early successional habitat, as encroaching shrubs are associated with higher tick‐borne disease hazard, and vegetation removal might be a solution to reduce hazard in coastal dunes. The high degree of spatial heterogeneity in the abundance of tick‐borne pathogens also poses opportunities to manage recreational activities to limit human exposure to tick‐borne diseases.

Publisher

Wiley

Subject

Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3