Climatic and management‐related drivers of endemic European spruce bark beetle populations in boreal forests

Author:

Gohli Jostein1ORCID,Krokene Paal1ORCID,Flo Heggem Eva Solbjørg2,Økland Bjørn1ORCID

Affiliation:

1. Division of Biotechnology and Plant Health Norwegian Institute of Bioeconomy Research Ås Norway

2. Division of Survey and Statistics Norwegian Institute of Bioeconomy Research Ås Norway

Abstract

Abstract Climate change is already reducing carbon sequestration in Central European forests dramatically through extensive droughts and bark beetle outbreaks. Further warming may threaten the enormous carbon reservoirs in the boreal forests in northern Europe unless disturbance risks can be reduced by adaptive forest management. The European spruce bark beetle (Ips typographus) is a major natural disturbance agent in spruce‐dominated forests and can overwhelm the defences of healthy trees through pheromone‐coordinated mass‐attacks. We used an extensive dataset of bark beetle trap counts to quantify how climatic and management‐related factors influence bark beetle population sizes in boreal forests. Trap data were collected during a period without outbreaks and can thus identify mechanisms that drive populations towards outbreak thresholds. The most significant predictors of bark beetle population size were the volume of mature spruce, the extent of newly exposed clearcut edges, temperature and soil moisture. For clearcut edge, temperature and soil moisture, a 3‐year time lag produced the best model fit. We demonstrate how a model incorporating the most significant predictors, with a time lag, can be a useful management tool by allowing spatial prediction of future beetle population sizes. Synthesis and Applications: Some of the population drivers identified here, i,e., spruce volume and clearcut edges, can be targeted by adaptive management measures to reduce the risk of future bark beetle outbreaks. Implementing such measures may help preserve future carbon sequestration of European boreal forests.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3