Landscape patterns drive provision of nature's contributions to people by mobile species

Author:

O'Brien Sophie A.12ORCID,Anderson Dean P.2,Lavorel Sandra23ORCID,Lai Hao Ran4ORCID,de Burgh Natalie5,Tylianakis Jason M.4ORCID

Affiliation:

1. Food Transitions 2050 Joint Postgraduate School, School of Biological Sciences University of Canterbury Christchurch New Zealand

2. Manaaki Whenua Landcare Research Lincoln New Zealand

3. Laboratoire d'Ecologie Alpine Université Grenoble Alpes—Université Savoie Mont Blanc—CNRS Grenoble France

4. Bioprotection Aotearoa, School of Biological Sciences University of Canterbury Christchurch New Zealand

5. Hawke's Bay Regional Council Napier New Zealand

Abstract

Abstract Predicting how nature's contributions to people (NCP) vary spatially remains a challenge. For NCP provided by mobile species, it is unclear how predictions need to account for the influence of multiple habitat types that act as sources, sinks and potential distractors of the NCP‐providing species. Existing approaches that do not account for these effects may inaccurately predict outcomes in real landscapes. To move beyond these limitations, we transfer quantitative inference approaches from movement ecology to explore how spatial habitat patterns determine the negative NCP of the invasive common brushtail possum Trichosurus vulpecula in New Zealand. We used a Bayesian model to investigate how the size of, and distance from, grassland and indigenous and exotic forest patches together contribute to relative possum density (measured by capture probability across a trapping network) in a heterogeneous 11,000‐ha landscape. We found that indigenous and exotic forest area were the most important factors in determining possum density. Although capture probability declined with increasing grassland area, the addition of grassland did not improve the relative model fit above one with indigenous forest as the only habitat. We expected differences in predicted possum density at habitat boundaries, for example, due to preferential foraging at edges. We found that indigenous and exotic forests contributed to capture probability interactively, such that capture probability at the between‐habitat edge was lower than expected, given the habitat area. We also found that models allowing for non‐linear habitat effects of exotic forests or grasslands, but not indigenous forests, were significantly better at predicting possum density than simpler models. Synthesis and applications. Our novel approach for spatial prediction can be applied to any of nature's contributions to people (NCP), and extended to identify trade‐offs and synergies among multiple NCP. For example, the negative NCP of possum density trades off with multiple known positive NCP from indigenous forests, including culturally significant non‐material NCP, and material NCP produced by exotic forests. We recommend that landscape management plans to maximise these positive NCP in future scenarios also consider how the risk of possum density may dampen net NCP provision. To minimise this negative NCP, our results support trap deployment in both indigenous and exotic forest.

Funder

University of Canterbury

Ministry of Business, Innovation and Employment

Publisher

Wiley

Reference49 articles.

1. Modifying estimates of sampling effort to account for sprung traps;Beauvais G. P.;Wildlife Society Bulletin,1999

2. Grasslands-more important for ecosystem services than you might think

3. Spillover of functionally important organisms between managed and natural habitats

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3