Response of habitat quality to mixed severity disturbance regime in Norway spruce forests

Author:

Bace Radek1ORCID,Hofmeister Jenyk1ORCID,Vitkova Lucie1ORCID,Brabec Marek2ORCID,Begovic Kresimir1ORCID,Cada Vojtech1ORCID,Janda Pavel1ORCID,Kozak Daniel1ORCID,Mikolas Martin13ORCID,Nagel Thomas A.14ORCID,Pavlin Jakob1ORCID,Rodrigo Ruffy15ORCID,Vostarek Ondrej1ORCID,Svoboda Miroslav1ORCID

Affiliation:

1. Department of Forest Ecology, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Praha Czech Republic

2. Academy of Sciences of the Czech Republic, Department of Statistical Modeling Institute of Computer Science Prague 8 Czech Republic

3. Prales Rosina Slovakia

4. Department of Forestry and Renewable Forest Resources, Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

5. Department of Forest Science Biliran Province State University Biliran Philippines

Abstract

Abstract Natural disturbances change forest habitat quality for many species. As the extent and intensity of natural disturbances may increase under climate change, it is unclear how this increase can affect habitat quality on different spatial scales. To support management tools and policies aiming to prevent habitat loss, we studied how habitat quality develops in the long run depending on the disturbance severity using a space‐for‐time substitution approach. We explored the effects of time since disturbance (0–250 years) and disturbance severity (20%–100% canopy removal) on structure‐based habitat quality indicators in European primary Norway spruce Picea abies forests using 1000 m2 circular plots in hierarchical design (a total of 407 plots in 35 stands). Disturbance history was reconstructed from tree cores. Habitat quality indicators were modelled as a function of the severity of the most severe disturbance and the time since this disturbance. We hypothesised that high within‐stand habitat heterogeneity is formed by different successional stages after disturbances of various intensities. The results showed a U‐shaped response of habitat quality to post‐disturbance habitat succession on the plot scale. The decline deepened with disturbance severity. The U‐shape response occurred in: large tree occurrence, amount of standing and lying deadwood, diversity of understory and understory openness. The spatial diversity in disturbance parameters increased spatial diversity of habitat quality on a stand level as expected. This high within‐stand habitat heterogeneity also decreased with increasing age of the most recent disturbance. This suggests that the absence of young successional stages results in the absence of some important elements for biodiversity, for example sun‐exposed snags. Synthesis and applications. Our results demonstrate that currently intensifying natural disturbance regime can consequently result in a lower habitat heterogeneity. In managed spruce forests after natural disturbances, we recommend at least the partial retention of biological legacies to preserve habitat heterogeneity and to avoid uniform and dense plantations resulting in a greater homogenisation. To emulate the natural disturbances pattern, spruce forests should be managed with a wide range of harvested patches of the size limited by a local natural disturbance regime creating spatial heterogeneity.

Funder

Grantová Agentura České Republiky

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3