Development of alternative diagnosis of HH1, HH3, HH5 and HCD fertility haplotypes and subfertility syndrome in cattle

Author:

Shormanova Marzhan1,Makhmutov Abzal1,Shormanova Aizhamal2,Muslimova Zhadyra1,Ussenbekov Yessengali1ORCID

Affiliation:

1. Department of Obstetrics, Surgery and Biotechnology of Animal Reproduction Kazakh National Agrarian Research University Almaty Republic of Kazakhstan

2. Institute of Botany and Phytointroduction, Kazakh National Agrarian Research University Almaty Republic of Kazakhstan

Abstract

AbstractThe increasing prevalence of hereditary anomalies in Holstein cattle populations presents a pressing issue, leading to concerns such as embryonic mortality and the birth of non‐viable offspring. This study addresses the urgency of managing harmful genetic mutations in Holstein cattle by developing alternative diagnostic methods. The research aims to devise effective means to diagnose fertility haplotypes HH1, HH3, HH5, HCD and BY and subfertility syndrome in cattle. To achieve this goal, a range of molecular genetic techniques were employed, including Tetra‐Primer ARMS‐PCR methods, PCR‐RFLP analysis and allele‐specific PCR. These methods facilitated the identification of heterozygous carriers of various fertility haplotypes and subfertility syndrome in Holstein cows and servicing bulls. The study reveals the prevalence of these genetic defects within the Republic of Kazakhstan's cattle population. HH1, HH3, HH5, HCD and BY fertility haplotypes were found to have occurrence rates ranging from 1.4% to 16.6%, with subfertility syndrome detected in 4.5% of Simmental bulls. The practical significance of this research lies in its contribution to genetic monitoring and management strategies for Holstein cattle populations. By introducing affordable, rapid and accurate diagnostic methods, such as the T‐ARMS‐PCR, the study provides a valuable tool for controlling and mitigating the spread of harmful genetic mutations, ultimately improving the overall genetic health and productivity of Holstein cattle in the region. This research addresses a critical need in the cattle breeding industry and underscores the importance of genetic monitoring to ensure the long‐term viability and sustainability of Holstein cattle populations.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3