Hybrid data‐driven modeling for accurate prediction of quality parameters in sugarcane milling with fine‐tuning

Author:

Yang Tao12,Mao Hanling12ORCID,Yin Yanqing12,Zhong Jiankang12,Wen Jieming12,Ding Jiang12,Duan Qingshan3ORCID

Affiliation:

1. School of Mechanical Engineering Guangxi University Nanning P. R. China

2. Key Laboratory of Manufacturing System and Advanced Manufacturing Technology Guangxi University Nanning P. R. China

3. School of Light Industry and Food Engineering Guangxi University Nanning P. R. China

Abstract

AbstractThe data‐driven model for predicting sugarcane milling quality parameters is crucial for optimization. Current challenges include real‐time data acquisition and limited labeled data, reducing model accuracy and raising data collection costs. There is an urgent need to utilize unlabeled data to establish data‐driven models for sugarcane milling. This study introduces novel hybrid strategies, namely combining Convolutional Neural Network (CNN) with Kernel Extreme Learning Machine (KELM), utilizing pre‐training and fine‐tuning techniques. These strategies include CNN‐KELM and Transfer Learning CNN‐KELM (TL‐CNN‐KELM). Results demonstrate superior accuracy compared to single algorithms. TL‐CNN‐KELM, leveraging unlabeled data through transfer learning, achieves reductions of 0.007 in mean squared error and 0.005 in mean absolute error for extraction rate predictions. For initial juice sugar content predictions, reductions of 0.027 in mean squared error and 0.012 in mean absolute error are attained. This approach demonstrates enhanced accuracy in predicting quality parameters while maintaining robustness to data size.Practical ApplicationsThis work can reduce the data acquisition cost for quality parameter prediction and accelerate the intellectualization of sugarcane milling. In production practice, there are many process industries similar to sugarcane milling, so the novel algorithms also provide an idea for the quality parameter optimization and prediction of other process industries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Wiley

Subject

General Chemical Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3