Intercropping of orchardgrass and alfalfa improves soil fertility, forage yield, feeding values and land use efficiency while limiting ruminal greenhouse gas emissions

Author:

Xue Zhulin1ORCID,Wang Yunling2,Palmer Elizabeth3,Zhang Yingjun4ORCID

Affiliation:

1. College of Animal Science and Technology, Hebei North University Zhangjiakou China

2. College of Water Resources and Civil Engineering China Agricultural University Beijing China

3. IFAS‐Range Cattle Research and Education Center, University of Florida Gainesville Florida USA

4. Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs College of Grassland Science and Technology, China Agricultural University Beijing China

Abstract

AbstractIntercropping has been a globally accepted practice for forage production, however, consideration of multiple performance criteria for intercropping including forage production, feed use efficiency and ruminal greenhouse gas emissions needs to be further investigated. A two‐year field study was conducted to evaluate forage dry matter (DM) yield, nutritive value, feeding values and land‐use efficiency as well as ruminal carbon dioxide (CO2) and methane (CH4) emissions of intercropped orchardgrass (Dactylis glomerata) and alfalfa (Medicago sativa) sown in five intercropping ratios (100:0, 75:25, 50:50, 25:75, and 0:100, based on seed weight) and three nitrogen (N) fertilizer levels (0, 50, and 100 kg ha−1). Increasing alfalfa proportion and N fertilizer level increased soil nutrients and the two‐year total DM yield. Intercropping increased both land and nitrogen use efficiency (NUE) compared with monocultures. Greater NUE was obtained when N fertilizer was applied at 50 kg ha−1, compared with 100 kg ha−1. Increasing the proportion of alfalfa in intercrops increased the crude protein yield and rumen undegraded protein yield. Harvested forage intercrops were incubated with ruminal fluid for 48 h. Degraded DM yield, CO2 and CH4 emissions increased with increasing alfalfa proportion in intercrops. Overall, the 75:25 of orchardgrass‐alfalfa intercrops was recommended as the best compromise between high forage productivity, superior feed use efficiency and low ruminal greenhouse gas emissions through complementary effects. The results indicate that the appropriate N fertilization level would be 50 kg ha−1 for acquiring higher nitrogen use efficiency and forage productivity.

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3