Enhancing Low‐Light Images: A Variation‐based Retinex with Modified Bilateral Total Variation and Tensor Sparse Coding

Author:

Yang Weipeng1ORCID,Gao Hongxia12ORCID,Zou Wenbin1ORCID,Huang Shasha1ORCID,Chen Hongsheng1ORCID,Ma Jianliang13ORCID

Affiliation:

1. School of Automation Science and Engineering South China University of Technology Guangzhou China

2. Research Center for Brain‐Computer Interface Pazhou Laboratory Guangzhou China

3. KUKA Robotics Guangdong Co., Ltd. Foshan China

Abstract

AbstractLow‐light conditions often result in the presence of significant noise and artifacts in captured images, which can be further exacerbated during the image enhancement process, leading to a decrease in visual quality. This paper aims to present an effective low‐light image enhancement model based on the variation Retinex model that successfully suppresses noise and artifacts while preserving image details. To achieve this, we propose a modified Bilateral Total Variation to better smooth out fine textures in the illuminance component while maintaining weak structures. Additionally, tensor sparse coding is employed as a regularization term to remove noise and artifacts from the reflectance component. Experimental results on extensive and challenging datasets demonstrate the effectiveness of the proposed method, exhibiting superior or comparable performance compared to state‐of‐the‐art approaches. Code, dataset and experimental results are available at https://github.com/YangWeipengscut/BTRetinex.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Guangzhou Municipal Science and Technology Project

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3