Effective contact texture region aware pavement skid resistance prediction via convolutional neural network

Author:

Shi Weibo12ORCID,Niu Dongyu12ORCID,Li Zirui34,Niu Yanhui12

Affiliation:

1. School of Materials Science and Engineering Chang'an University Xi'an China

2. Engineering Research Center of Transportation Materials of the Ministry of Education Chang’an University Xi'an China

3. School of Mechanical Engineering Beijing Institute of Technology Beijing China

4. Department of Transport and Planning, Faculty of Civil Engineering and Geosciences Delft University of Technology Delft The Netherlands

Abstract

AbstractThe surface texture of asphalt pavement has a significant effect on skid resistance performance. However, its contribution to the performance of skid resistance is non‐homogeneous and subjects to local validity. There are also a few deep learning models that take into account the effective contact texture region. This paper proposes a convolutional neural network model based on the effective contact texture region, containing macro‐ and micro‐scale awareness sub‐modules. In this study, the asphalt mixture with varying gradations was designed to accurately obtain the effective contact texture region. Then, the textures were disentangled into macro‐ and micro‐texture scales by applying the fast Fourier transform and fed into the model for training. Finally, the area of effective contact texture region was calculated, and the effective contact ratio parameter was then proposed using the triangulation algorithm. The results showed that the effective contact texture area of pavement varies by the asphalt mixture type. The effective contact ratio parameter exhibited a significant positive correlation (Pearson correlation coefficient is 0.901, R2= 0.8129) with skid resistance performance and was also influenced by key sieve aggregate content from 2.36 to 4.75 mm. The data of effective contact texture region following disentanglement significantly released the model performance (the relative error dropped to 1.81%). The model exhibited improved precision and performance, which can be utilized as an efficient, non‐contact alternative method for skid resistance analysis.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3