Rare plant species occurrence patterns are associated not with soil properties, but with frequent fire in a southeast Australian dry sclerophyll forest

Author:

Sritharan Meena S.1ORCID,Bowd Elle J.1,Scheele Ben C.1,Blanchard Wade1,Foster Claire N.1ORCID,Lindenmayer David B.1

Affiliation:

1. Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia

Abstract

AbstractQuestionSoil properties can play a crucial role in influencing the abundance and distribution of plant species. Fire regimes can also have substantial impacts on plant community composition. However, few studies have examined the effects of both fire regimes and soil properties on the occurrence of rare plant species. Here, we asked if rare species have specific soil and fire regime associations relative to common species, and if soil properties may explain potential fire effects.LocationBooderee National Park, southeastern Australia.MethodsWe collected soil cores and completed vegetation surveys on 42 sites in Sydney Coastal Dry Sclerophyll Forest vegetation. We tested for associations between the number of rare species and common species present in relation to three soil chemical properties (available phosphorus, ammonium and organic carbon), fire frequency, and time since fire.ResultsWe found that rare and common species were not associated with any of the examined soil properties. However, rare species were associated with sites with a high fire frequency, while common species were negatively associated with time since fire.ConclusionsOur results indicate that rare species’ occurrence patterns may be influenced by the direct effects of fire or mediated by multiple factors, rather than shaped solely by soil properties in our study area. Future work to understand the factors that underpin rare species’ occurrence patterns in response to fire is critical to develop fire management protocols that effectively conserve rare species in dry sclerophyll forests.

Publisher

Wiley

Subject

Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3