Models for predicting the risk of illness in leprosy contacts in Brazil: Leprosy prediction models in Brazilian contacts

Author:

de Alecrin Edilamar Silva12ORCID,Martins Maria Auxiliadora Parreiras13ORCID,de Oliveira Ana Laura Grossi1ORCID,Lyon Sandra24ORCID,Lages Ana Thereza Chaves1ORCID,Reis Ilka Afonso5ORCID,Pereira Fernando Henrique6ORCID,Oliveira Dulcinea7ORCID,Goulart Isabela Maria Bernardes78ORCID,da Costa Rocha Manoel Otávio19ORCID

Affiliation:

1. Programa de Pós‐Graduação em Ciências da Saúde: Infectologia e Medicina Tropical Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

2. Fundação Hospitalar do Estado de Minas Gerais Hospital Eduardo de Menezes Hospital Belo Horizonte Minas Gerais Brazil

3. Departamento de Produtos Farmacêuticos, Faculdade de Farmácia Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

4. Curso de Medicina Faculdade de Saúde e Ecologia Humana Belo Horizonte Minas Gerais Brazil

5. Departamento de Estatística, Instituto de ciências exatas Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

6. Pró‐Reitoria de Graduação Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

7. Centro de Referência Nacional em Dermatologia Sanitária e Hanseníase, Hospital das Clínicas Universidade Federal de Uberlândia (UFU/EBSERH) Uberlândia Minas Gerais Brazil

8. Departamento de Clínica Médica, Faculdade de Medicina Universidade Federal de Uberlândia Uberlândia Uberlândia Minas Gerais Brazil

9. Departamento de Clínica Médica, Faculdade de Medicina Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil

Abstract

AbstractObjectiveThis study aims to develop and validate predictive models that assess the risk of leprosy development among contacts, contributing to an enhanced understanding of disease occurrence in this population.MethodsA cohort of 600 contacts of people with leprosy treated at the National Reference Center for Leprosy and Health Dermatology at the Federal University of Uberlândia (CREDESH/HC‐UFU) was followed up between 2002 and 2022. The database was divided into two parts: two‐third to construct the disease risk score and one‐third to validate this score. Multivariate logistic regression models were used to construct the disease score.ResultsOf the four models constructed, model 3, which included the variables anti‐phenolic glycolipid I immunoglobulin M positive, absence of Bacillus Calmette‐Guérin vaccine scar and age ≥60 years, was considered the best for identifying a higher risk of illness, with a specificity of 89.2%, a positive predictive value of 60% and an accuracy of 78%.ConclusionsRisk prediction models can contribute to the management of leprosy contacts and the systematisation of contact surveillance protocols.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3