Modeling individual growth reveals decreasing gray whale body length and correlations with ocean climate indices at multiple scales

Author:

Pirotta Enrico1ORCID,Bierlich K. C.2,New Leslie3,Hildebrand Lisa2,Bird Clara N.2ORCID,Fernandez Ajó Alejandro2,Torres Leigh G.2

Affiliation:

1. Centre for Research into Ecological and Environmental Modelling University of St Andrews St Andrews Scotland UK

2. Geospatial Ecology of Marine Megafauna Laboratory, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences Oregon State University Newport Oregon USA

3. Department of Mathematics, Computer Science and Statistics Ursinus College Collegeville Pennsylvania USA

Abstract

AbstractChanges in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05–0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.

Funder

National Marine Fisheries Service

Office of Naval Research

Oregon Sea Grant, Oregon State University

Hatfield Marine Science Center, Oregon State University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3