Contrasting effects of sheep and cattle grazing on foliar fungal diseases by changing plant community characteristics

Author:

Li Tianyun12ORCID,Allan Eric2ORCID,Yang Sihan1,Liu Yiming1,Inbar Moshe3ORCID,Wang Deli1ORCID,Zhong Zhiwei1ORCID

Affiliation:

1. Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science Northeast Normal University Changchun China

2. Institute of Plant Sciences University of Bern Bern Switzerland

3. Department of Evolutionary and Environmental Biology University of Haifa Haifa Israel

Abstract

Abstract Pathogens are ubiquitous in ecosystems and play a key role in affecting host community structure. In grasslands, large grazing animals such as cattle and sheep have been shown to affect foliar fungal pathogens. However, theory and empirical studies have come to conflicting conclusions because grazers can directly and indirectly impact pathogens through a wide variety of mechanisms and various grazers may impact pathogens in different ways. A better understanding of the mechanisms by which grazers impact pathogens is important for a fundamental understanding of herbivore pathogen interactions and also to optimise grazing managements to reduce pathogen outbreaks. Here, we investigate multiple mechanisms by which livestock grazing impacts foliar fungal pathogens in grasslands. We integrate a large‐scale grazing experiment, with a removal experiment manipulating plant density and litter biomass, to identify direct and indirect effects of two herbivores on pathogens with different life histories (biotrophs and necrotrophs), in a temperate grassland in northeast China. We found that grazing by cattle and sheep had contrasting impacts: cattle grazing significantly reduced pathogen load, of both biotrophs and necrotrophs, whereas sheep grazing increased biotrophic pathogen load, but did not affect the necrotrophs. The grazing effects were mostly indirect and mediated by different impacts of the herbivores on plant community structure. Cattle grazing reduced pathogen load because it reduced the abundance of susceptible, fast‐growing plants, and the overall density of plants, while sheep grazing increased pathogen infection because it reduced the abundance of resistant plant species. Plant diversity also reduced pathogen infection but these effects were independent of the herbivores. Our results show that different herbivores can have contrasting impacts on pathogen infection through contrasting impacts on host community competence. This suggests the importance of considering multiple mechanisms simultaneously to evaluate the impact of herbivores on host‐pathogen interactions. Read the free Plain Language Summary for this article on the Journal blog.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3