Assessing hybrid vigour using the thermal sensitivity of physiological trade‐offs in tiger salamanders

Author:

Burger Isabella J.12ORCID,Carter Evin T.3ORCID,Magner Lexie M.1,Muñoz Martha M.4ORCID,Sears Michael W.5ORCID,Fitzpatrick Benjamin M.6ORCID,Riddell Eric A.12ORCID

Affiliation:

1. Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames Iowa USA

2. Department of Biology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

3. Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee USA

4. Department of Ecology and Evolutionary Biology Yale University New Haven Connecticut USA

5. Department of Biological Sciences Clemson University Clemson South Carolina USA

6. Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA

Abstract

Abstract Hybridization between species affects biodiversity and population sustainability in numerous ways, many of which depend on the fitness of the hybrid relative to the parental species. Hybrids can exhibit fitter phenotypes compared to the parental lineages, and this ‘hybrid vigour’ can then lead to the extinction of one or both parental lines. In this study, we analysed the relationship between water loss and gas exchange to compare physiological performance among three tiger salamander genotypes—the native California tiger salamander (CTS), the invasive barred tiger salamanders (BTS) and CTS × BTS hybrids across multiple temperatures (13.5°C, 20.5°C and 23.5°C). We developed a new index of performance, the water‐gas exchange ratio (WGER), which we define as the ratio of gas exchange to evaporative water loss (μL VO2/μL H2O). The ratio describes the ability of an organism to support energetically costly activities with high levels of gas exchange while simultaneously limiting water loss to lower desiccation risk. We used flow through respirometry to measure the thermal sensitivity of metabolic rate and resistance to water loss of each salamander genotype to compare indices of physiological performance. We found that temperature had a significant effect on metabolic rate and resistance to water loss, with both traits increasing as temperatures warmed. Across genotypes, we found that hybrids have a higher WGER than the native CTS, owing to a higher metabolic rate despite having a lower resistance to water loss. These results provide a greater insight into the physiological mechanisms driving hybrid vigour and offer a potential explanation for the rapid spread of salamander hybrids. More broadly, our introduction of the WGER may allow for species‐ or lineage‐wide comparisons of physiological performance across changing environmental conditions, highlighting the insight that can be gleaned from multitrait analysis of organism performance. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Division of Environmental Biology

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

Reference56 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3