Foliar phosphorus concentration modulates the defensive mutualism of an endophytic fungus in a perennial host grass

Author:

Decunta F. A.1ORCID,Pérez L. I.1,Graff P.1ORCID,Gundel P. E.12ORCID

Affiliation:

1. Facultad de Agronomía, IFEVA‐CONICET Universidad de Buenos Aires Buenos Aires Argentina

2. Centro de Ecología Integrativa, Instituto de Ciencias Biológicas Universidad de Talca, Campus Talca Talca Chile

Abstract

Abstract Grasses hosting Epichloë endophytes are protected against herbivores due to the production of various fungal alkaloids. Previous research has found that high foliar phosphorus concentrations reduce the level of the alkaloid ergovaline, thereby reducing the endophyte‐mediated herbivore resistance. Yet, the impact of phosphorus on ergovaline biosynthesis versus its influence on endophyte growth and synthesis of other fungal alkaloids remains unresolved. Our objective was to elucidate these relationships. We grew endophyte‐symbiotic and non‐symbiotic Festuca arundinacea plants and fertilised them with different doses of phosphorus. Later, half of the plants from each treatment were challenged with larvae of the generalist chewing insect Spodoptera frugiperda. We assessed the relationships between foliar phosphorus levels, fungal mycelium and alkaloid concentrations, as well as their impacts on larvae performance, herbivore‐caused damage and plant biomass. Endophyte mycelial biomass in plant tissue was found to be independent of foliar phosphorus concentration. The alkaloids lolines and peramine showed a linear relationship with mycelial biomass but no correlation with foliar phosphorus. Surprisingly, high ergovaline concentrations were positively associated with an interaction between endophyte mycelial biomass and foliar phosphorus concentration. Although herbivory increased loline concentration, only high concentrations of ergovaline and peramine were related to reduced S. frugiperda larvae weight gain. However, endophyte presence did not reduce herbivory damage on plants. Contrary to expectation, we did not find a negative but a positive association between concentrations of foliar phosphorus and ergovaline alkaloid, through its interaction with endophyte mycelial biomass. Alternatively, our findings suggest that phosphorus plays a crucial role in modulating the Epichloë‐mediated defensive mutualism, primarily through its effects on ergovaline rather than on endophyte concentration or production of other alkaloids. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Fondo para la Investigación Científica y Tecnológica

Secretaria de Ciencia y Tecnica, Universidad de Buenos Aires

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3