Impaired immune responses in streptozotocin-induced type I diabetes in mice. Involvement of high glucose

Author:

Rubinstein R1,Genaro A M1,Motta A2,Cremaschi G1,Wald M R1

Affiliation:

1. Laboratorio de Inmunofarmacología

2. Laboratorio de Fisiopatología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad de Buenos Aires (UBA), Facultad de Medicina, Buenos Aires, Argentina

Abstract

Summary Diabetes is widely believed to predispose to serious infections. However, the mechanisms linking diabetes and immunosuppression are not well defined. One potential mediator of the altered defence mechanisms is hyperglycaemia. It has been identified as the main factor contributing to the development of diseases associated with diabetes mellitus. In this study we analyse the immune response in diabetes and the direct effect of hyperglycaemia on T and B lymphocyte reactivity. Diabetes induced an early decrease in IgG levels in the secondary response. However, both primary responses against a T-cell-dependent or independent antigen were affected after 6 months of diabetes induction. T- and B- cell proliferation was only decreased at this time. To gain insight into the potential mechanisms involved, we evaluated the influence of hyperglycaemia over the immune response. Pre-incubation of lymph node and spleen cells in a high glucose (HG) containing medium led to a significant time- and dose-dependent decrease in T- and B-cell proliferation. This effect was associated with the presence of HG-derived supernatants. Still viable cells after HG exposition were able to improve their proliferative response when cultured with the mitogen in a fresh standard medium. HG diminished cell viability, increased apoptosis and induced oxidative stress in lymphocytes. These results indicate that HG concentrations can directly affect lymphoid cell growth. An increase in oxidative stress would be implicated in this deleterious effect. The possibility that prolonged exposure to pathologically HG concentrations would result in the immunosuppressive state observed in diabetes is also discussed.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3