Systemic and local anti-C5 therapy reduces the disease severity in experimental autoimmune uveoretinitis

Author:

Copland D A1,Hussain K2,Baalasubramanian S3,Hughes T R3,Morgan B P3,Xu H4,Dick A D12,Nicholson L B12

Affiliation:

1. Academic Unit of Ophthalmology, Department of Clinical Sciences South Bristol

2. Department of Cellular and Molecular Medicine, University of Bristol, Bristol

3. Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff

4. Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK

Abstract

Summary Activation of complement occurs during autoimmune retinal and intraocular inflammatory disease as well as neuroretinal degenerative disorders. The cleavage of C5 into fragments C5a and C5b is a critical event during the complement cascade. C5a is a potent proinflammatory anaphylatoxin capable of inducing cell migration, adhesion and cytokine release, while membrane attack complex C5b-9 causes cell lysis. Therapeutic approaches to prevent complement-induced inflammation include the use of blocking monoclonal antibodies (mAb) to prevent C5 cleavage. In these current experiments, the rat anti-mouse C5 mAb (BB5.1) was utilized to investigate the effects of inhibition of C5 cleavage on disease progression and severity in experimental autoimmune uveoretinitis (EAU), a model of organ-specific autoimmunity in the eye characterized by structural retinal damage mediated by infiltrating macrophages. Systemic treatment with BB5.1 results in significantly reduced disease scores compared with control groups, while local administration results in an earlier resolution of disease. In vitro, contemporaneous C5a and interferon-γ signalling enhanced nitric oxide production, accompanied by down-regulation of the inhibitory myeloid CD200 receptor, contributing to cell activation. These experiments demonstrate that C5 cleavage contributes to the full expression of EAU, and that selective C5 blockade via systemic and local routes of administration can suppress disease. This presents great therapeutic potential to protect against tissue damage during autoimmune responses in the retina or inflammation-induced degenerative disease.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3