Spatial distribution and drivers of throughfall beneath shrub canopies in a semi‐arid desert steppe

Author:

Chen Xiaoying123ORCID,Chen Lin23,Yang Xinguo23,Li Minlan4,Song Naiping23

Affiliation:

1. College of Agriculture Ningxia University Yinchuan China

2. Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China Ningxia University Yinchuan China

3. Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China Ningxia University Yinchuan China

4. Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Desert & Desertificat Lanzhou China

Abstract

AbstractThe spatial distribution of water is mainly controlled by the vegetation canopy, which determines the partitioning of rainfall into interception, throughfall (TF) and stemflow. TF is known to be a critical component of hydrological and biogeochemical cycles. Spatiotemporal patterns of TF have been studied in different ecosystems, although the majority of studies focused on forests. Few reports on small‐scale TF variability and drivers in semi‐arid desert steppes have been published. Herein, we investigated the variability of TF of two morphologically distinct artificial revegetation shrubs (Caragana liouana and Salix psammophila) within a semi‐arid desert steppe, synthesized the data and analysed the characteristics of TF distribution and drivers at the rainfall event scales. We found that (1) morphological differences were sufficient to generate significant (p < 0.05) differences in TF between the two shrub species under the same rainfall and meteorological conditions, with a TF percentage of 70.22% for C. liouana and 79.87% for S. psammophila; (2) a linear outward radical increase in TF was identified with increasing distance from the base of the isolated shrubs. Wind speed had a greater effect on the distribution of TF beneath the shrub structure for C. liouana, whereas the distribution of TF beneath the shrub structure for S. psammophila was more affected by wind direction; and (3) canopy architecture, in particular the stem angle and canopy base area, which affected the openness of the canopy and played an important role in the distribution of TF in the two shrubs. The results reveal the key factors driving water use under rainfall during revegetation and the TF utilization mechanism in semi‐arid areas and highlight the complementary effect of different species on ecosystem hydrological functions.

Funder

Key Research and Development Program of Ningxia

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3