Developing a deep learning model for sleep stage prediction in obstructive sleep apnea cohort using 60 GHz frequency‐modulated continuous‐wave radar

Author:

Lee Ji Hyun1ORCID,Nam Hyunwoo2,Kim Dong Hyun1ORCID,Koo Dae Lim2,Choi Jae Won3,Hong Seung‐No4,Jeon Eun‐Tae1,Lim Sungmook5,Jang Gwang soo5,Kim Baek‐hyun5

Affiliation:

1. Department of Radiology Seoul Metropolitan Government – Seoul National University Boramae Medical Center, Seoul National University College of Medicine Seoul Korea

2. Department of Neurology Seoul Metropolitan Government – Seoul National University Boramae Medical Center, Seoul National University College of Medicine Seoul Korea

3. Department of Radiology Armed Forces Yangju Hospital Yangju Korea

4. Department of Otorhinolaryngology – Head and Neck Surgery Seoul Metropolitan Government – Seoul National University Boramae Medical Center, Seoul National University College of Medicine Seoul Korea

5. AU Inc Daejeon Korea

Abstract

SummaryGiven the significant impact of sleep on overall health, radar technology offers a promising, non‐invasive, and cost‐effective avenue for the early detection of sleep disorders, even prior to relying on polysomnography (PSG)‐based classification. In this study, we employed an attention‐based bidirectional long short‐term memory (Attention Bi‐LSTM) model to accurately predict sleep stages using 60 GHz frequency‐modulated continuous‐wave (FMCW) radar. Our dataset comprised 78 participants from an ongoing obstructive sleep apnea (OSA) cohort, recruited between July 2021 and November 2022, who underwent overnight polysomnography alongside radar sensor monitoring. The dataset encompasses comprehensive polysomnography recordings, spanning both sleep and wakefulness states. The predictions achieved a Cohen's kappa coefficient of 0.746 and an overall accuracy of 85.2% in classifying wakefulness, rapid‐eye‐movement (REM) sleep, and non‐REM (NREM) sleep (N1 + N2 + N3). The results demonstrated that the models incorporating both Radar 1 and Radar 2 data consistently outperformed those using only Radar 1 data, indicating the potential benefits of utilising multiple radars for sleep stage classification. Although the performance of the models tended to decline with increasing OSA severity, the addition of Radar 2 data notably improved the classification accuracy. These findings demonstrate the potential of radar technology as a valuable screening tool for sleep stage classification.

Publisher

Wiley

Subject

Behavioral Neuroscience,Cognitive Neuroscience,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3