Gill structure and respiratory ability of Euchiloglanis kishinouyei (Osteichthyes: Siluriformes: Sisoridae)

Author:

Li Luojia1,Deng Longjun2,Li Jie3,Li Tiancai2,Chen Pengyu1,Luo Wei1,Du Zongjun1ORCID

Affiliation:

1. College of Animal Science and Technology Sichuan Agricultural University Chengdu China

2. Yalong River Hydropower Development Co. Ltd Chengdu China

3. Sichuan Runjie Hongda Aquatic Science and Technology Co. Ltd Chengdu China

Abstract

AbstractGlyptosternoid fishes are distributed in the torrent environment of alpine canyons, where they often leave the water to climb rocky cliffs. As one of the most primitive species of glyptosternoid fishes, Euchiloglanis kishinouyei was examined in the current study to analyse its gill microstructure and respiratory ability. We first found that the oxygen consumption rate was relatively high and negatively correlated with body mass and that the average oxygen consumption at night was higher than during the day. The asphyxiation point of E. kishinouyei (5.05 ± 0.22 g) was c. 1.93 mg/L. Subsequently, the surface morphology, gross gill tissue structure, and ultra‐microstructure of gill lamellae were investigated using optical microscopy and SEM. The gills showed an overall trend of regression, with five pairs of gill arches in each gill cavity. The adjacent gill filaments had large gaps, and the gill lamellae were thick. The gill filaments were closely arranged on the gill arches, their folded respiratory surface was highly vascularized with no tiny crest, and there were obvious tiny crests, grooves, pits, and pores on the nonrespiratory surface. The gill lamellae were closely embedded on both sides of gill filaments, which were composed of flat epithelial cells, basement membrane, pillar cells, and mucous cells. The gill total respiratory area correlated positively with body mass and length, whereas the gill relative respiratory area correlated negatively with body mass. We comprehensively analysed the gill microstructure and respiratory capacity of E. kishinouyei to provide fundamental data for the adaptive evolution of the gill structures of bimodally respiring fishes and offer insights into further study on the accessory air‐breathing function of skin.

Funder

Sichuan Province Science and Technology Support Program

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3