Optimization and modeling of vacuum impregnation of pineapple rings and comparison with osmotic dehydration

Author:

Thomas Binuja1,Pulissery Sudheer Kundukulangara2,Sankalpa K. B.3,Lal A. M. Nandhu4,Warrier Aswin S.4,Mahanti Naveen Kumar5ORCID,Kothakota Anjineyulu4ORCID

Affiliation:

1. Kerala State Council for Science Technology & Environment (KSCSTE), Sasthra Bhavan Thiruvananthapuram Kerala India

2. Department of Agricultural Engineering, College of Agriculture Kerala Agricultural University Thrissur Kerala India

3. Department of Food Process Engineering, Danaveera Sirasangi Sri Lingaraj Desai College of Horticulture Engineering and Food Technology, Devihosur University of Horticultural Sciences Bagalkote Karnataka India

4. Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India

5. Post Harvest Technology Research Station Dr. Y.S.R. Horticultural University Tadepalligudem Andhra Pradesh India

Abstract

AbstractThe vacuum impregnation (VI) process parameters (vacuum pressure = 20–60 kPa; VI temperature = 35–55°C; concentration of the sucrose solution = 40–60 °Brix; and vacuum process time = 8–24 min) for pineapple rings were optimized based on the moisture content (MC), water loss (WL), solids gain (SG), yellowness index (YI), and total soluble solids (TSS) content of pineapple rings using response surface methodology (RSM). A relationship was developed between the process and response variables using RSM and artificial neural network (ANN) techniques. The effectiveness of VI was evaluated by comparing it with the osmotic dehydration (OD) technique. The optimum condition was found to be 31.782 kPa vacuum pressure, 50.441°C solution temperature, and 60 °Brix sucrose concentration for 20.068 min to attain maximum TSS, YI, SG, and WL, and minimum MC of pineapple rings. The R2 values of RSM models for all variables varied between 0.70 and 0.91, whereas mean square error values varied between 0.76 and 71.58 and for ANN models varied between 0.87–0.93 and 0.53–193.78, respectively.Scanning electron micrographs (SEM) revealed that parenchymal cell rupture was less in VI than in OD. The VI pineapple rings exhibited more pores and high SG, as compared to OD, due to the pressure impregnation. Spectroscopic analysis affirmed that the stretching vibrations of intermolecular and intramolecular interactions were significant in VI as against OD. The VI reduced the drying time by 35% compared to OD, with the highest overall acceptability score and lower microbial load during storage.Practical ApplicationPineapple is a perishable fruit, which necessitates processing for extended shelf life. This study highlights the potential of the vacuum impregnation process as a promising alternative to conventional preservation methods such as osmotic dehydration for pineapples.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3