pH‐dependent stability of major betalains in the encapsulated beetroot extracts (Beta vulgaris L.)

Author:

Lukitasari Diah M.1,Indrawati Renny2,Chandra Rosita D.3,Heriyanto 3,Shioi Yuzo3,Botosudarmo Tatas H. P.4ORCID

Affiliation:

1. Department of Agricultural Technology Processing Technology of Plantation Product Study Program, Pontianak State Polytechnic Pontianak Indonesia

2. Department of General Lecture Petra Christian University Surabaya Indonesia

3. Ma Chung Research Center for Photosynthetic Pigments (MRCPP) Universitas Ma Chung Malang Indonesia

4. Department of Food Technology Universitas Ciputra Surabaya Surabaya Indonesia

Abstract

AbstractBetalain is a water‐soluble pigment contained in Caryophyllales plants. It not only holds potential as a natural food colorant but also offers various health benefits, acting as an antioxidant. This study focused on analyzing the pH‐dependent stability of encapsulated betalain pigments extracted from red beetroot (Beta vulgaris L.) using methods such as absorption spectroscopy, HPLC, and LC–MS. The major pigments identified were vulgaxanthin I, betanin, isobetanin, and neobetanin, alongside minor components, including three betaxanthin species and a degradation product known as betalamic acid. Spectrophotometric analyses revealed that above pH 8, the betalain peak at 435 nm decreased and red‐shifted to a peak at 549 nm, a shift that could be reversed through neutral pH treatment. At pH 11, a new broad peak appeared at 410 nm and was identified as betalamic acid. To assess the pH‐dependency of each betalain, the targeted betalains were separated and quantified through HPLC after incubation across a wide pH range of 2–11 and during storage. After 3 days of storage in highly alkaline conditions (pH 10–11), major betalains, with the exception of neobetanin, underwent significant degradation. Conversely, these pigments displayed relative stability in acidic conditions. In contrast, neobetanin showed vulnerability to acidic conditions but exhibited tolerance to alkaline pH levels of 10–11. The degradation product, betalamic acid, demonstrated a similar susceptibility to alkaline pH as betanins. In conclusion, the significant stability decrease under highly alkaline conditions results not only from the hydrolytic reaction of betalains but also from the degradation of betalamic acid itself.Practical ApplicationEncapsulation methods are used to enhance the stability of betalains against temperature variations; however, the effects of pH, especially when considering individual betalain species, are not well understood. Despite betalains exhibiting similar features and being suitable for a wide pH range from acid to alkaline conditions, they are significantly affected by alkaline pH levels exceeding 10, as well as by storage duration. This study demonstrated the application of encapsulation to pH‐dependent stability, and the findings offer valuable insights and a fresh perspective on betalains as red biocolorants, extending their potential application to a wide range of pH‐controlled food products.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3