Properties, evaluation and application of naringin magnetic molecularly imprinted polymer based on synergistic imprinting strategy

Author:

Zhang Li‐Ping1ORCID,Wang Miao1,Li Tian1,He Yi‐Fan2,Li Shu‐Jing2,Wang Lan1,Mao Long‐Fei1

Affiliation:

1. School of Basic Medicine and Forensic Medicine Henan University of Science and Technology Luoyang P. R. China

2. Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing P. R. China

Abstract

AbstractA novel and facile surface molecularly imprinted polymer coated on magnetic chitosan (Fe3O4@CS@MIP) was fabricated for the selective recognition and enrichment of naringin (NRG). The Fe3O4@CS@MIP was prepared based on covalent–noncovalent synergistic imprinting strategies, utilizing 4‐vinyl phenyl boric acid as covalent functional monomer, deep eutectic solvent (choline chloride/methacrylic acid [ChCl/MAA]) as non‐covalent functional monomer and Fe3O4@CS nanoparticles as the magnetic support. The obtained Fe3O4@CS@MIP exhibited a uniform morphology, excellent crystallinity, outstanding magnetic properties, and high surface area. Owing to the double recognition abilities, the resultant polymer showed exceptional binding performance and rapid mass transfer in phosphate buffer (pH 7.0). The maximum binding amount of Fe3O4@CS@MIP was found to be 15.08 mg g−1, and the equilibrium adsorption could be achieved within 180 min. Moreover, they also exhibited stronger selectivity for NRG and satisfactory reusability, with only 11.0% loss after five adsorption‐desorption cycles. Additionally, the Fe3O4@CS@MIP, serving as an adsorbent, presented practical application potential in the separation and enrichment of NRG from pummelo peel, with extraction efficiency in the range of 79.53% to 84.63%. This work provided a new strategy for improving the performance of MIP and contributed an attractive option for the extraction of NRG in complex samples.

Funder

Henan Provincial Science and Technology Research Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3