Macrophage iron dyshomeostasis promotes aging‐related renal fibrosis

Author:

Wu Lingzhi1ORCID,Lin Hongchun1,Li Shaomin1,Huang Yuebo1,Sun Yuxiang1,Shu Shuangshuang1,Luo Ting1,Liang Tiantian1,Lai Weiyan1,Rao Jialing1,Hu Zhaoyong2,Peng Hui13ORCID

Affiliation:

1. Nephrology Division, Department of Medicine, the Third Affiliated Hospital Sun Yat‐sen University Guangzhou China

2. Nephrology Division, Department of Medicine Baylor College of Medicine Houston TX USA

3. NHC Key Laboratory of Clinical Nephrology (Sun Yat‐sen University) and Guangdong Provincial Key Laboratory of Nephrology Guangzhou China

Abstract

AbstractRenal aging, marked by the accumulation of senescent cells and chronic low‐grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single‐cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low‐grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage‐mediated tubular partial epithelial‐mesenchymal transition in vitro, thereby mitigating the expression of fibrosis‐related genes. Using SCENIC analysis, we infer Stat1 as a key age‐related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti‐aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging‐related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age‐related renal chronic low‐grade inflammation and fibrosis.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3