Exosomal HSPB1, interacting with FUS protein, suppresses hypoxia‐induced ferroptosis in pancreatic cancer by stabilizing Nrf2 mRNA and repressing P450

Author:

Zhang Lun1ORCID,Yang Liuxu2,Du Keyuan2

Affiliation:

1. Department of Hepatobiliary Surgery The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P.R. China

2. Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China

Abstract

AbstractFerroptosis is a new type of programmed cell death, which has been involved in the progression of tumours. However, the regulatory network of ferroptosis in pancreatic cancer is still largely unknown. Here, using datasets from GEO and TCGA, we screened HSPB1, related to the P450 monooxygenase signalling, a fuel of ferroptosis, to be a candidate gene for regulating pancreatic cancer cell ferroptosis. We found that HSPB1 was enriched in the exosomes derived from human pancreatic cancer cell lines SW1990 and Panc‐1. Then, hypoxic SW1990 cells were incubated with exosomes alone or together with HSPB1 siRNA (si‐HSPB1), and we observed that exosomes promoted cell proliferation and invasion and suppressed ferroptosis, which was reversed by si‐HSPB1. Moreover, we found a potential binding affinity between HSPB1 and FUS, verified their protein interaction by using dual‐colour fluorescence colocalization and co‐IP assays, and demonstrated the promoting effect of FUS on oxidative stress and ferroptosis in hypoxic SW1990 cells. Subsequently, FUS was demonstrated to bind with and stabilize the mRNA of Nrf2, a famous anti‐ferroptosis gene that negatively regulates the level of P450. Furthermore, overexpressing FUS and activating the Nrf2/HO‐1 pathway (using NK‐252) both reversed the inhibitory effect of si‐HSPB1 on exosome functions. Finally, our in vivo studies showed that exosome administration promote tumour growth in nude mice of xenotransplantation, which was able to be eliminated by knockdown of HSPB1. In conclusion, exosomal HSPB1 interacts with the RNA binding protein FUS and decreases FUS‐mediated stability of Nrf2 mRNA, thus suppressing hypoxia‐induced ferroptosis in pancreatic cancer.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3