Is Facebook’s Advertising Data Accurate Enough for Use in Social Science Research? Insights from a Cross-National Online Survey

Author:

Grow André1,Perrotta Daniela1,Del Fava Emanuele1,Cimentada Jorge1,Rampazzo Francesco2,Gil-Clavel Sofia1,Zagheni Emilio1,Flores René D.3,Ventura Ilana3,Weber Ingmar4

Affiliation:

1. Laboratory of Digital and Computational Demography Max Planck Institute for Demographic Research , Rostock , Germany

2. Department of Sociology, Leverhulme Centre for Demographic Science, Nuffield College , Oxford , UK

3. Department of Sociology University of Chicago , Chicago, Illinois , USA

4. Social Computing Group Qatar Computing Research Institute , Ar-Rayyan , Qatar

Abstract

Abstract Social scientists increasingly use Facebook’s advertising platform for research, either in the form of conducting digital censuses of the general population, or for recruiting participants for survey research. Both approaches depend on the accuracy of the data that Facebook provides about its users, but little is known about how accurate these data are. We address this gap in a large-scale, cross-national online survey (N = 137,224), in which we compare self-reported and Facebook-classified demographic information (sex, age and region of residence). Our results suggest that Facebook’s advertising platform can be fruitfully used for conducing social science research if additional steps are taken to assess the accuracy of the characteristics under consideration.

Publisher

Oxford University Press (OUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Social Sciences (miscellaneous),Statistics and Probability

Reference43 articles.

1. The impact of Hurricane Maria on out-migration from Puerto Rico: evidence from Facebook data;Alexander;Population and Development Review,2019

2. Total error in a big data world: Adapting the TSE framework to big data;Amaya;Journal of Survey Statistics and Methodology,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3