Joint pricing and inventory management under minimax regret

Author:

Li Chengzhang1ORCID,Lu Mengshi2ORCID

Affiliation:

1. Antai College of Economics and Management Shanghai Jiao Tong University Shanghai China

2. Mitchell E. Daniels, Jr. School of Business Purdue University West Lafayette Indiana USA

Abstract

AbstractWe study the problem of jointly optimizing the price and order quantity for a perishable product in a single selling period, also known as the pricing newsvendor problem, under demand ambiguity. Specifically, the demand is a function of the selling price and a random factor of which the distribution is unknown. We employ the minimax regret decision criterion to minimize the worst‐case regret, where the regret is defined as the difference between the optimal profit that could be obtained with perfect/complete information and the realized profit using the decision made with ambiguous demand information. First, given the interval in which the random factor lies with high probability, we characterize the optimal pricing and ordering decisions under the minimax regret criterion and compare their properties with those in the classical models that seek to maximize the expected profit. Specifically, we explore the impact of inventory risk by comparing the optimal price and the risk‐free price and study comparative statics with respect to the degree of demand ambiguity and the unit ordering cost. We further show that the minimax regret approach avoids the high degree of conservativeness that is often incurred in the application of the commonly used max–min robust optimization approach. Second, when partial distributional information of the random factor is available, we adopt the Wasserstein distance to depict the distributional ambiguity and characterize the set of worst‐case distributions and the maximum regret given the selling price and order quantity. Third, we compare the minimax regret approaches with the traditional profit‐maximization approach in a data‐driven setting. We show via a numerical study that the minimax regret approaches outperform the traditional profit‐maximization approach, especially when the data are scarce, the demand has high volatility, and the number of exercised prices is small. Furthermore, leveraging the partial distributional information of the random factor can further improve the performance of the minimax regret approach.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Management Science and Operations Research

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3