Intricate microbe‐plant‐metabolic remodeling mediated by intercropping enhances the quality of Panax quinquefolius L

Author:

Duan Wanying12,Chen Xiaoli1,Ding Yu1,Mao Xinying1,Song Zhengjian3,Bao Jie1,Fang Lei145,Guo Lanping2,Zhou Jie124ORCID

Affiliation:

1. School of Biological Science and Technology University of Jinan Jinan P. R. China

2. State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijng P. R. China

3. Weihai (Wendeng) Authentic Ginseng Industry Development Co., Ltd. Wendeng P. R. China

4. Shandong Engineering Research Center of Key Technologies for High‐Value and High‐Efficiency Full Industry Chain of Lonicera japonica Linyi P. R. China

5. Pingyi Fangyuan Pharmaceutical Co., Ltd. Linyi P. R. China

Abstract

AbstractImproving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect. In this study, we focused on Panax quinquefolium L. (ginseng) and four treatments were set up: the control without intercropping, P. quinquefolius + ryegrass (Lolium perenne L.), P. quinquefolius + red clover (Trifolium pratense L.), and P. quinquefolius + ryegrass + red clover. An LC–MS/MS system was used to detect the changes in the P. quinquefolius secondary metabolites, and high‐throughput sequencing technology was used to determine the changes in the P. quinquefolius' rhizosphere soil microorganisms. Ginsenoside content, soil enzyme activities, and arbuscular mycorrhizal infection rate of P. quinquefolius were also measured using HPLC, ELISA kits, and microscopy, respectively. Co‐intertia and Pearson's analysis were performed to explore the relationship between the metabolites and the P. quinquefolius microorganisms. Intercropping significantly increased the content of ginsenoside metabolites and recruited a large number of beneficial bacteria to the P. quinquefolius rhizosphere. The P. quinquefolius secondary metabolites were associated with the rhizosphere microbial community. For example, the dominant microorganisms, such as Acidobacteriota and Chloroflexi, played a key role in promoting the synthesis of ginsenoside Rd and (20R) ginsenoside Rg3 by P. quinquefolius. Intercropping led to changes in the P. quinquefolius secondary metabolites by driving and reshaping the rhizosphere microorganisms. These findings revealed the potential application of intercropping for improving the quality of P. quinquefolius.

Funder

Natural Science Foundation of Shandong Province

Key Technology Research and Development Program of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3