Cortical dopamine D5 receptors regulate neuronal circuit oscillatory activity and memory in rats

Author:

Albeely Abdalla M.1ORCID,Nolan Caitlin J.2,Rasmussen Duncan J.2,Bailey Craig D. C.2ORCID,Perreault Melissa L.2ORCID

Affiliation:

1. Department of Molecular and Cellular Biology University of Guelph Guelph Ontario Canada

2. Department of Biomedical Sciences University of Guelph Guelph Ontario Canada

Abstract

AbstractIntroductionThe dopamine D5 receptor (D5R) shows high expression in cortical regions, yet the role of the receptor in learning and memory remains poorly understood. This study evaluated the impact of prefrontal cortical (PFC) D5R knockdown in rats on learning and memory and assessed the role of the D5R in the regulation of neuronal oscillatory activity and glycogen synthase kinase‐3 (GSK‐3β), processes integral to cognitive function.Materials and MethodsUsing an adeno‐associated viral (AAV) vector, male rats were infused with shRNA to the D5R bilaterally into the PFC. Local field potential recordings were taken from freely moving animals and spectral power and coherence were evaluated in, and between, the PFC, orbitofrontal cortex (OFC), hippocampus (HIP), and thalamus. Animals were then assessed in object recognition, object location, and object in place tasks. The activity of PFC GSK‐3β, a downstream effector of the D5R, was evaluated.ResultsAAV‐mediated knockdown of the D5R in the PFC induced learning and memory deficits. These changes were accompanied by elevations in PFC, OFC, and HIP theta spectral power and PFC‐OFC coherence, reduced PFC‐thalamus gamma coherence, and increased PFC GSK‐3β activity.ConclusionThis work demonstrates a role for PFC D5Rs in the regulation of neuronal oscillatory activity and learning and memory. As elevated GSK‐3β activity has been implicated in numerous disorders of cognitive dysfunction, this work also highlights the potential of the D5R as a novel therapeutic target via suppression of GSK‐3β.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3