Understanding niche construction and phenotypic plasticity as causes of natural selection

Author:

Lala Kevin1

Affiliation:

1. School of Biology University of St Andrews St Andrews UK

Abstract

AbstractFor many evolutionary biologists, fitness differences cause trait frequency changes in populations, and natural selection explains the evolution of adaptations. Treating fitness differences as a cause, however, is more scientific convention rather than decree, and analyses of the causes of natural selection potentially afford richer evolutionary explanations. Unfortunately, the historical assumptions that the complexities of development leave the origins of phenotypic variation unpredictable, and that ecological processes are idiosyncratic, have hindered detailed analysis of the developmental bases of natural selection. A poorly appreciated consequence is that explanations reliant on selection potentially mask particular causal patterns important in evolution. Here, using examples of environmental modification and regulation by organisms (‘niche construction’, a.k.a. ‘ecosystem engineering’), and developmental plastic responses to environmental conditions (‘phenotypic plasticity’), I will highlight how the development and activities of organisms create developmental biases that co‐determine the nature of the response to selection, in an often surprisingly well‐regulated manner. Niche construction biases the phenotypic variation exposed to selection, often generating axes of covariation with plastically expressed morphological traits. Taxonomically shared developmental mechanisms aggregate across populations to generate statistical regularities that are easy to miss because the developmental causes of fitness differences are not currently central to the study of evolution. Recent theory and experiments suggest that how organisms develop and what organisms do cause and strengthen the relationship between key traits and fitness, thereby part‐determining the characteristics of natural selection. The findings have implications for understanding parallel evolution, macroevolutionary trends and variation in evolvability.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3