Novel indole retinoid derivative induces apoptosis and cell cycle arrest and modulates AKT and ERK signaling in HL‐60 cells

Author:

Gurkan‐Alp A. Selen1ORCID,Karabay Arzu Z.2ORCID,Koc Asli2ORCID,Buyukbingol Erdem1ORCID

Affiliation:

1. Faculty of Pharmacy, Department of Pharmaceutical Chemistry Ankara University Ankara Turkey

2. Faculty of Pharmacy, Department of Biochemistry Ankara University Ankara Turkey

Abstract

AbstractChemotherapy with targeted drugs is the first line therapy option for acute and chronic myeloid leukemia. However, hematopoietic stem cell transplantation may be used in high‐risk patients or patients with failed responses to chemo drugs. Discovery and development of more effective new agents with lower side effects is the main aim of leukemia treatment. In this study, a novel retinoid compound with tetrahydronaphthalene ring was synthesized and evaluated for anticancer activity in human chronic and acute myeloid leukemia cell lines K562 and HL‐60. Novel N‐(1H‐indol‐1‐yl)‐5,5,8,8‐tetramethyl‐5,6,7,8‐tetrahydronaphthalene‐2‐carboxamide was synthesized based on molecular hybridization of the two different bioactive structures retinoid head and indole. The effects of the synthesized carboxamide compound, which was referred to as compound 5, were determined in K562 chronic myeloid leukemia and HL‐60 acute myeloid leukemia cell lines and L929 fibroblast cell line, which served as a control. Colorimetric MTT and caspase3 activity tests, flow cytometry, western blot, and microscopic examinations were used to evaluate biological activity. Compound 5 more effectively induced cell death in HL60 cells in comparison to K562 cells and L929 fibroblast cells. Therefore, further mechanism of cell death was investigated in HL60 cell line. It was found that compound 5 induced remarkable cytotoxicity, caspase3 activation, and PARP fragmentation in HL60 cells. Flow cytometric staining showed that the percentage of cells arrested in G0/G1 was also increased with compound 5 treatment. Important modulator proteins of cell proliferation p‐ERK, p‐AKT, and p‐m‐TOR were also found to be inhibited with compound 5 treatment. Collectively, our results reveal compound 5, which is a novel indole retinoid compound as a potential active agent for the treatment of acute promyelocytic leukemia.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3