Power outage prediction using data streams: An adaptive ensemble learning approach with a feature‐ and performance‐based weighting mechanism

Author:

Kabir Elnaz1,Guikema Seth D.2,Quiring Steven M.3

Affiliation:

1. Department of Engineering Technology & Industrial Distribution Texas A&M University College Station Texas USA

2. Department of Industrial & Operations Engineering University of Michigan Ann Arbor Michigan USA

3. Department of Geography The Ohio State University Columbus Ohio USA

Abstract

AbstractA wide variety of weather conditions, from windstorms to prolonged heat events, can substantially impact power systems, posing many risks and inconveniences due to power outages. Accurately estimating the probability distribution of the number of customers without power using data about the power utility system and environmental and weather conditions can help utilities restore power more quickly and efficiently. However, the critical shortcoming of current models lies in the difficulties of handling (i) data streams and (ii) model uncertainty due to combining data from various weather events. Accordingly, this article proposes an adaptive ensemble learning algorithm for data streams, which deploys a feature‐ and performance‐based weighting mechanism to adaptively combine outputs from multiple competitive base learners. As a proof of concept, we use a large, real data set of daily customer interruptions to develop the first adaptive all‐weather outage prediction model using data streams. We benchmark several approaches to demonstrate the advantage of our approach in offering more accurate probabilistic predictions. The results show that the proposed algorithm reduces the probabilistic predictions' error of the base learners between 4% and 22% with an average of 8%, which also result in substantially more accurate point predictions. The improvement made by our algorithm is enhanced as we exchange base learners with simpler models.

Publisher

Wiley

Subject

Physiology (medical),Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3