Enhancing glass property predictions through ab initio‐derived descriptors

Author:

Arendt Felix1,Limbach René1ORCID,Wondraczek Lothar1ORCID,Sierka Marek1ORCID

Affiliation:

1. Otto Schott Institute of Materials Research Friedrich Schiller University Jena Jena Germany

Abstract

AbstractThe performance of ab initio descriptors derived from density functional theory simulations is systematically investigated in comparison to traditional compositional descriptors for the ability to predict glass properties utilizing machine learning algorithms. Two datasets are used for this purpose: an extensive, publicly available database involving a wide range of oxide glasses, and a small in‐house dataset covering a broader collection of inorganic glasses from metallic to non‐metallic materials. For the larger dataset, it was demonstrated that ab initio descriptors offer a substantial reduction in input dimensionality while retaining nearly equivalent predictive performance when compared to the compositional descriptors. The combination of ab initio and compositional descriptors showed an improvement in prediction accuracy. For the smaller dataset, the ab initio‐derived descriptors performed significantly better than the compositional descriptors, providing a valuable tool to improve glass property prediction in settings where the availability of data is limited. Furthermore, ab initio‐derived descriptors are not only computationally inexpensive and allow extrapolation beyond the training composition space but also facilitate model interpretation.

Funder

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Reference109 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3