Using artificial intelligence to predict choledocholithiasis: can machine learning models abate the use of MRCP in patients with biliary dysfunction?

Author:

Blum Joshua1ORCID,Hunn Sam1,Smith Jules1,Chan Fa Yu2,Turner Richard12

Affiliation:

1. Department of General Surgery Royal Hobart Hospital Hobart Tasmania Australia

2. Tasmanian School of Medicine University of Tasmania Hobart Tasmania Australia

Abstract

AbstractBackgroundPrompt diagnosis of choledocholithiasis is crucial for reducing disease severity, preventing complications and minimizing length of stay. Magnetic resonance cholangiopancreatography (MRCP) is commonly used to evaluate patients with suspected choledocholithiasis but is expensive and may delay definitive intervention. To optimize patient care and resource utilization, we have developed five machine learning models that predict a patients' risk of choledocholithiasis based on clinical presentation and pre‐MRCP investigation results.MethodsInpatients admitted to the Royal Hobart Hospital from 2018 to 2023 with a suspicion of choledocholithiasis were included. Exclusion criteria included prior hepatobiliary surgery, known hepatobiliary disease, or incomplete records. Variables related to clinical presentation, laboratory testing, and sonographic or CT imaging were collected. Four machine learning techniques were employed: logistic regression, XGBoost, random forest, and K‐nearest neighbours. The three best performing models were combined to create an ensemble model. Model performance was compared against the American Society for Gastrointestinal Endoscopy (ASGE) choledocholithiasis risk stratification guidelines.ResultsOf the 222 patients included, 113 (50.9%) had choledocholithiasis. The most successful models were the random forest (accuracy: 0.79, AUROC: 0.83) and ensemble (accuracy and AUROC: 0.81). Every model outperformed the ASGE guidelines. Key variables influencing the models' predictions included common bile duct diameter, lipase, imaging evidence of cholelithiasis, and liver function tests.ConclusionMachine learning models can accurately assess a patient's risk of choledocholithiasis and could assist in identifying patients who could forgo an MRCP and proceed directly to intervention. Ongoing validation on prospective data is necessary to refine their accuracy and clinical utility.

Publisher

Wiley

Reference18 articles.

1. Unnecessary MRCP prior to ERCP in patients with choledocholithiasis: the role of on‐site ERCP;Sagvand BTea;Am. J. Gastroenterol.,2020

2. Australia Co.Availability and accessibility of diagnostic imaging equipment around Australia.2018.

3. Factors and Outcomes Associated with MRCP Use prior to ERCP in Patients at High Risk for Choledocholithiasis

4. ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis

5. ASGE guidelines result in cost‐saving in the management of choledocholithiasis;Singhvi G;Ann. Gastroenterol.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3