Threshold responses of soil gross nitrogen transformation rates to aridity gradient

Author:

Song Lei12ORCID,Wang Jinsong12ORCID,Zhang Ruiyang12ORCID,Pan Junxiao1ORCID,Li Yang1,Wang Song12,Niu Shuli12ORCID

Affiliation:

1. Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing P.R. China

2. College of Resources and Environment University of Chinese Academy of Sciences Beijing P.R. China

Abstract

AbstractThe responses of soil nitrogen (N) transformations to climate change are crucial for biome productivity prediction under global change. However, little is known about the responses of soil gross N transformation rates to drought gradient. Along an aridity gradient across the 2700 km transect of drylands on the Qinghai‐Tibetan Plateau, this study measured three main soil gross N transformation rates in both topsoil (0–10 cm) and subsoil (20–30 cm) using the laboratorial 15N labeling. The relevant soil abiotic and biotic variables were also determined. The results showed that gross N mineralization and nitrification rates steeply decreased with increasing aridity when aridity was less than 0.5 but just slightly decreased with increasing aridity when aridity was larger than 0.5 at both soil layers. In topsoil, the decreases of the two gross rates were accompanied by the similar decreased patterns of soil total N content and microbial biomass carbon with increasing aridity (p < .05). In subsoil, although the decreased pattern of soil total N with increasing aridity was still similar to the decreases of the two gross rates (p < .05), microbial biomass carbon did not change (p > .05). Instead, bacteria and ammonia oxidizing archaea abundances decreased with increasing aridity when aridity was larger than 0.5 (p < .05). With an aridity threshold of 0.6, gross N immobilization rate increased with increasing aridity in wetter region (aridity < 0.6) accompanied with an increased bacteria/fungi ratio, but decreased with increasing aridity in drier region (aridity > 0.6) where mineral N and microbial biomass N also decreased at both soil layers (p < .05). This study provided new insight to understand the differential responses of soil N transformation to drought gradient. The threshold responses of the gross N transformation rates to aridity gradient should be noted in biogeochemical models to better predict N cycling and manage land in the context of global change.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3