Seasonal trends in leaf‐level photosynthetic capacity and water use efficiency in a North American Eastern deciduous forest and their impact on canopy‐scale gas exchange

Author:

Davidson Kenneth J.12ORCID,Lamour Julien1ORCID,McPherran Anna2ORCID,Rogers Alistair1ORCID,Serbin Shawn P.12ORCID

Affiliation:

1. Department of Environmental and Climate Sciences Brookhaven National Laboratory Upton NY 11973 USA

2. Department of Ecology and Evolution Stony Brook University Stony Brook NY 11794 USA

Abstract

Summary Vegetative transpiration (E) and photosynthetic carbon assimilation (A) are known to be seasonally dynamic, with changes in their ratio determining the marginal water use efficiency (WUE). Despite an understanding that stomata play a mechanistic role in regulating WUE, it is still unclear how stomatal and nonstomatal processes influence change in WUE over the course of the growing season. As a result, limited understanding of the primary physiological drivers of seasonal dynamics of canopy WUE remains one of the largest uncertainties in earth system model projections of carbon and water exchange in temperate deciduous forest ecosystems. We investigated seasonal patterns in leaf‐level physiological, hydraulic, and anatomical properties, including the seasonal progress of the stomatal slope parameter (g1; inversely proportional to WUE) and the maximum carboxylation rate (Vcmax). Vcmax and g1 were seasonally variable; however, their patterns were not temporally synchronized. g1 generally showed an increasing trend until late in the season, while Vcmax peaked during the midsummer months. Seasonal progression of Vcmax was primarily driven by changes in leaf structural, and anatomical characteristics, while seasonal changes in g1 were most strongly related to changes in Vcmax and leaf hydraulics. Using a seasonally variable Vcmax and g1 to parameterize a canopy‐scale gas exchange model increased seasonally aggregated A and E by 3% and 16%, respectively.

Funder

Stony Brook University

U.S. Department of Energy

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3