Double debiased transfer learning for adaptive Huber regression

Author:

Wang Ziyuan1,Wang Lei1ORCID,Lian Heng2

Affiliation:

1. School of Statistics and Data Science, KLMDASR, LEBPS and LPMC Nankai University Tianjin China

2. Department of Mathematics City University of Hong Kong Hong Kong China

Abstract

AbstractThrough exploiting information from the source data to improve the fit performance on the target data, transfer learning estimations for high‐dimensional linear regression models have drawn much attention recently, but few studies focus on statistical inference and robust learning in the presence of heavy‐tailed/asymmetric errors. Using adaptive Huber regression (AHR) to achieve the bias and robustness tradeoff, in this paper we propose a robust transfer learning algorithm with high‐dimensional covariates, then construct valid confidence intervals and hypothesis tests based on the debiased lasso approach. When the transferable sources are known, a two‐step ‐penalized transfer AHR estimator is firstly proposed and the error bounds are established. To correct the biases caused by the lasso penalty, a unified debiasing framework based on the decorrelated score equations is considered to establish asymptotic normality of the debiased lasso transfer AHR estimator. Confidence intervals and hypothesis tests for each component can be constructed. When the transferable sources are unknown, a data‐driven source detection algorithm is proposed with theoretical guarantee. Numerical studies verify the performance of our proposed estimator and confidence intervals, and an application to Genotype‐Tissue Expression data is also presented.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3