The accumulation of anthropogenic stressors induces a progressive shift in the ecological preferences and morphological traits shared by riparian plant communities

Author:

Janssen Philippe1,Couloigner Clément12ORCID,Piégay Hervé3,Evette André1

Affiliation:

1. University of Grenoble Alpes, INRAE, LESSEM St‐Martin‐d'Hères France

2. Département de Biologie University of Laval Québec Québec Canada

3. University of Lyon, UMR 5600 EVS, CNRS, ENS de Lyon Lyon France

Abstract

Abstract In riverine ecosystems, human‐induced stressors related to flow regulation and bank stabilisation have accumulated over time. The restoration of these highly anthropised ecosystems has become a major issue over the last few decades, with ambitious stated objectives. However, while the individual impact of flow regulation and channelisation on river functioning has been extensively studied, the response of ecological communities to multiple co‐occurring human‐induced stressors remains largely unexplored. Using a sampling design based on five river reaches in the Rhône catchment, ranging from unregulated in flow and bedload transport to intensively regulated reaches, we sought to understand how the accumulation of anthropogenic stressors influenced the functional response of riparian plants communities on gravel bars. By using 12 ecological and morphological traits, we performed a classification analysis to construct six riparian guilds and investigated whether their representativeness, as well as the mean value of individual traits, varied with increasing levels of anthropogenic stressors. Species cover and redundancy in several guilds increased or decreased significantly with increasing pressures. Thus, the guild of small taproot herbs with low nutrient and soil moisture requirements (xero‐oligotro‐taproot species guild) and the guild of taproot herbs adapted to very bright and dry conditions (mesoxero‐mesotro‐taproot species guild) dominated the unregulated reaches with active bedload transport. Conversely, regulated reaches with stabilised baseflow and inactive transport were dominated by the guild of flood‐tolerant trees (hygro‐perennial tall species guild) and the guild of vegetatively reproducing and flood‐tolerant perennial herbs (hygro‐perennial clonal species guild). Analysis of individual traits revealed a shift in environmental conditions, from full light to shade tolerance and from dry to humid, with increasing anthropogenic stressors. In response to this decrease in drought levels, plants traits shifted from annual to perennial species, from sexual to vegetative strategies and from taproots to a fibrous root system. Our results highlight the accumulated effects that anthropogenic stressors can have on riparian communities, inducing a progressive shift in certain traits related to life history, reproductive strategies, and drought adaptations. This effect on a set of shared traits reveals the strong influence that human infrastructures can have on the ecological niche of species and the morphological adaptations of riparian vegetation. From an applied point of view, and for highly anthropised rivers, our results suggest that restoration actions targeting a single stressor will not be sufficient to reorient riparian plant communities towards an ecological state closer to reference systems. Since human‐induced stressors have often deeply altered the flow and sediment regimes of rivers, a more integrated approach based on the restoration of erosion and flooding processes is essential to allow the expression of a wider diversity of riparian plant communities and habitats.

Funder

Agence de l'Eau Rhône Méditerranée Corse

Labex DRIIHM

Publisher

Wiley

Subject

Aquatic Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3