Estimating the benefits of floodplain restoration to juvenile Chinook salmon in the upper San Francisco Estuary, United States, under future climate scenarios

Author:

Huntsman Brock M.1ORCID,Wulff Marissa L.1,Knowles Noah2,Sommer Ted3,Feyrer Frederick V.1,Brown Larry R.1

Affiliation:

1. California Water Science Center U.S. Geological Survey Sacramento CA U.S.A.

2. California Water Science Center U.S. Geological Survey Menlo Park CA U.S.A.

3. Public Policy of California Sacramento CA U.S.A.

Abstract

Many river systems within the Central Valley of California have been disconnected from their floodplains, hypothesized to be partially responsible for declining Chinook salmon populations (Oncorhynchus tshawytscha). The primary floodplain of the system, Yolo By‐Pass (known regionally as “Yolo Bypass”), offered an opportunity to examine whether improved connectivity between the floodplain and river could limit negative climate change effects on salmon populations. Specifically, the top of the floodplain (Fremont Weir) is being modified to provide Sacramento River Chinook salmon better access to floodplain rearing habitat. We estimated restoration effects on the Yolo By‐Pass flood regime now and under future climate scenarios using flow rating curves. Additionally, we used temperature and flow‐specific effects on Chinook salmon population dynamics within the Yolo By‐Pass and Sacramento River complex to describe how the restoration project and climate change may interact to affect juvenile Chinook salmon biomass production. Our results indicate that the Fremont Weir restoration project will extend the frequency, timing, and duration of Yolo By‐Pass flooding. Our production model indicates that the modification will result in greater salmon entrainment rates into the Yolo By‐Pass, where salmon growth rates, survival rates, and biomass production were higher when compared to the Sacramento River main stem. The project appears to benefit all regional runs of Chinook salmon, which should help support life history diversity. Our results suggest that the weir modification should benefit native fish from the Central Valley that use floodplain habitat and that these benefits may be resilient to challenges created by a changing climate.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3