Genome‐wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress

Author:

Han K.1ORCID,Zhao Y.1,Liu J.1,Tian Y.1,El‐Kassaby Y. A.2,Qi Y.1,Ke M.1,Sun Y.1,Li Y.1ORCID

Affiliation:

1. National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration College of Biological Sciences and Technology, Beijing Forestry University Beijing China

2. Department of Forest and Conservation Sciences Faculty of Forestry The University of British Columbia Vancouver BC Canada

Abstract

Abstract The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype‐resolved genome assembly of P. tomentosa provide a platform for NAC protein genome‐wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow‐up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3