Estimating the fatigue limits for quenched and tempered steel rods treated with multifunction cavitation considering residual stress, hardness, and surface pits

Author:

Kikuchi Shoichi1ORCID,Ono Keisuke2,Yoshimura Toshihiko3,Ijiri Masataka4

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering Shizuoka University Shizuoka Japan

2. Graduate School of Integrated Science and Technology Shizuoka University Shizuoka Japan

3. Department of Mechanical Engineering Sanyo‐Onoda City University Yamaguchi Japan

4. Department of Mechanical Systems Engineering Tokyo Metropolitan University Tokyo Japan

Abstract

AbstractIn this study, multifunction cavitation (MFC) was performed on low‐alloy steel (AISI 4140 steel) rods with different hardnesses to increase their fatigue limit. It was found that a high compressive residual stress was generated on the surface of steel rods by MFC and that the magnitude of the compressive residual stress tended to increase with increasing specimen hardness, which resulted in a higher fatigue limit. However, fatigue cracks are known to be initiated from the pits and red rust that form on the surface during MFC treatment in water. Furthermore, relaxation of the compressive residual stress was also investigated during the fatigue test to elucidate the mechanism for improving the fatigue properties. The results showed that the fatigue limit for MFC‐treated steel rods was accurately estimated by considering residual stress relaxation, hardness, and pit formation. Validation of the fatigue limit estimation was also conducted through comparison with Murakami's equation.

Funder

Steel Foundation for Environmental Protection Technology

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3