Postprandial glucose‐management strategies in type 1 diabetes: Current approaches and prospects with precision medicine and artificial intelligence

Author:

Jafar Adnan1ORCID,Pasqua Melissa‐Rosina2

Affiliation:

1. Department of Biomedical Engineering McGill University Montreal Quebec Canada

2. Division of Endocrinology, Department of Medicine McGill University Montreal Quebec Canada

Abstract

AbstractPostprandial glucose control can be challenging for individuals with type 1 diabetes, and this can be attributed to many factors, including suboptimal therapy parameters (carbohydrate ratios, correction factors, basal doses) because of physiological changes, meal macronutrients and engagement in postprandial physical activity. This narrative review aims to examine the current postprandial glucose‐management strategies tested in clinical trials, including adjusting therapy settings, bolusing for meal macronutrients, adjusting pre‐exercise and postexercise meal boluses for postprandial physical activity, and other therapeutic options, for individuals on open‐loop and closed‐loop therapies. Then we discuss their challenges and future avenues. Despite advancements in insulin delivery devices such as closed‐loop systems and decision‐support systems, many individuals with type 1 diabetes still struggle to manage their glucose levels. The main challenge is the lack of personalized recommendations, causing suboptimal postprandial glucose control. We suggest that postprandial glucose control can be improved by (i) providing personalized recommendations for meal macronutrients and postprandial activity; (ii) including behavioural recommendations; (iii) using other personalized therapeutic approaches (e.g. glucagon‐like peptide‐1 receptor agonists, sodium‐glucose co‐transporter inhibitors, amylin analogues, inhaled insulin) in addition to insulin therapy; and (iv) integrating an interpretability report to explain to individuals about changes in treatment therapy and behavioural recommendations. In addition, we suggest a future avenue to implement precision recommendations for individuals with type 1 diabetes utilizing the potential of deep reinforcement learning and foundation models (such as GPT and BERT), employing different modalities of data including diabetes‐related and external background factors (i.e. behavioural, environmental, biological and abnormal events).

Publisher

Wiley

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3