Chasing footprints in time – reframing our understanding of human foot function in the context of current evidence and emerging insights

Author:

Behling Anja‐Verena12ORCID,Rainbow Michael J.2,Welte Lauren3,Kelly Luke1

Affiliation:

1. School of Human Movement and Nutrition Science The University of Queensland Union Rd St Lucia Queensland 4067 Australia

2. Department of Mechanical and Materials Engineering Queen's University 130 Stuart Street Kingston Ontario K7L 3N6 Canada

3. Department of Mechanical Engineering University of Wisconsin‐Madison 1513 University Ave Madison WI 53706 USA

Abstract

ABSTRACTIn this narrative review we evaluate foundational biomechanical theories of human foot function in light of new data acquired with technology that was not available to early researchers. The formulation and perpetuation of early theories about foot function largely involved scientists who were medically trained with an interest in palaeoanthropology, driven by a desire to understand human foot pathologies. Early observations of people with flat feet and foot pain were analogized to those of our primate ancestors, with the concept of flat feet being a primitive trait, which was a driving influence in early foot biomechanics research. We describe the early emergence of the mobile adaptor–rigid lever theory, which was central to most biomechanical theories of human foot function. Many of these theories attempt to explain how a presumed stiffening behaviour of the foot enables forward propulsion. Interestingly, none of the subsequent theories have been able to explain how the foot stiffens for propulsion. Within this review we highlight the key omission that the mobile adaptor–rigid lever paradigm was never experimentally tested. We show based on current evidence that foot (quasi‐)stiffness does not actually increase prior to, nor during propulsion. Based on current evidence, it is clear that the mechanical function of the foot is highly versatile. This function is adaptively controlled by the central nervous system to allow the foot to meet the wide variety of demands necessary for human locomotion. Importantly, it seems that substantial joint mobility is essential for this function. We suggest refraining from using simple, mechanical analogies to explain holistic foot function. We urge the scientific community to abandon the long‐held mobile adaptor–rigid lever paradigm, and instead to acknowledge the versatile and non‐linear mechanical behaviour of a foot that is adapted to meet constantly varying locomotory demands.

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3